Контрольная по Геометрии 7 Класс Ответы


А.В
Июнь 15, 2021 – 21:04
Иллюстрации к Геометрия. 7

Вопрос 1. Какие углы называются смежными?
Ответ. Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными полупрямыми.
На рисунке 31 углы (a1b) и (a2b) смежные. У них сторона b общая, а стороны a1 и a2 являются дополнительными полупрямыми.

Вопрос 2. Докажите, что сумма смежных углов равна 180°.
Ответ. Теорема 2.1. Сумма смежных углов равна 180°.
Доказательство. Пусть угол (a1b) и угол (a2b) - данные смежные углы (см. рис.31). Луч b проходит между сторонами a1 и a2 развёрнутого угла. Поэтому сумма углов (a1b) и (a2b) равна развёрнутому углу, т. е. 180°. Что и требовалось доказать.

Вопрос 3. Докажите, что если два угла равны, то смежные с ними углы также равны.
Ответ.

Из теоремы 2.1 следует, что если два угла равны, то смежные с ними углы равны.
Допустим, углы (a1b) и (c1d) равны. Нам нужно доказать, что углы (a2b) и (c2d) тоже равны.
Сумма смежных углов равна 180°. Из этого следует, что a1b + a2b = 180° и c1d + c2d = 180°. Отсюда, a2b = 180° - a1b и c2d = 180° - c1d. Так как углы (a1b) и (c1d) равны, то мы получаем, что a2b = 180° - a1b = c2d. По свойству транзитивности знака равенства следует, что a2b = c2d. Что и требовалось доказать.

Вопрос 4. Какой угол называется прямым (острым, тупым)?
Ответ. Угол, равный 90°, называется прямым углом.
Угол, меньший 90°, называется острым углом.
Угол, больший 90° и меньший 180°, называется тупым.

Вопрос 5. Докажите, что угол, смежный с прямым, есть прямой угол.
Ответ. Из теоремы о сумме смежных углов следует, что угол, смежный с прямым углом, есть прямой угол: x + 90° = 180°, x= 180° - 90°, x = 90°.

Вопрос 6. Какие углы называются вертикальными?
Ответ. Два угла называются вертикальными, если стороны одного угла являются дополнительными полупрямыми сторон другого.

Вопрос 7. Докажите, что вертикальные углы равны.
Ответ. Теорема 2.2. Вертикальные углы равны.
Доказательство. Пусть (a1b1) и (a2b2)- данные вертикальные углы (рис. 34). Угол (a1b2) является смежным с углом (a1b1) и с углом (a2b2). Отсюда по теореме о сумме смежных углов заключаем, что каждый из углов (a1b1) и (a2b2) дополняет угол (a1b2) до 180°, т.е. углы (a1b1) и (a2b2) равны. Что и требовалось доказать.

Source: oftob.ru
Вас может заинтересовать
Как решить задачу по геометрии Написать условие и получить
Как решить задачу по геометрии Написать условие и получить ...
Ответы к рабочей тетради по геометрии 7 класс Атанасян 2016
Ответы к рабочей тетради по геометрии 7 класс Атанасян 2016
Похожие публикации